Wnt signaling promotes oral but suppresses aboral structures in Hydractinia metamorphosis and regeneration.

نویسندگان

  • David J Duffy
  • Günter Plickert
  • Timo Kuenzel
  • Wido Tilmann
  • Uri Frank
چکیده

We studied the role of Wnt signaling in axis formation during metamorphosis and regeneration in the cnidarian Hydractinia. Activation of Wnt downstream events during metamorphosis resulted in a complete oralization of the animals and repression of aboral structures (i.e. stolons). The expression of Wnt3, Tcf and Brachyury was upregulated and became ubiquitous. Rescue experiments using Tcf RNAi resulted in normal metamorphosis and quantitatively normal Wnt3 and Brachyury expression. Isolated, decapitated polyps regenerated only heads but no stolons. Activation of Wnt downstream targets in regenerating animals resulted in oralization of the polyps. Knocking down Tcf or Wnt3 by RNAi inhibited head regeneration and resulted in complex phenotypes that included ectopic aboral structures. Multiple heads then grew when the RNAi effect had dissipated. Our results provide functional evidence that Wnt promotes head formation but represses the formation of stolons, whereas downregulation of Wnt promotes stolons and represses head formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct mechanisms underlie oral vs aboral regeneration in the cnidarian Hydractinia echinata

Cnidarians possess remarkable powers of regeneration, but the cellular and molecular mechanisms underlying this capability are unclear. Studying the hydrozoan Hydractinia echinata we show that a burst of stem cell proliferation occurs following decapitation, forming a blastema at the oral pole within 24 hr. This process is necessary for head regeneration. Knocking down Piwi1, Vasa, Pl10 or Ncol...

متن کامل

Wnt signaling in hydroid development: ectopic heads and giant buds induced by GSK-3beta inhibitors.

In Hydractinia, a colonial marine hydroid representing the basal phylum Cnidaria, Wnt signaling plays a major role in the specification of the primary body axis in embryogenesis and in the establishment of the oral pole during metamorphosis. Here we report supplementing investigations on head regeneration and bud formation in post-metamorphic development. Head and bud formation were accompanied...

متن کامل

The role of canonical Wnt signaling in leg regeneration and metamorphosis in the red flour beetle Tribolium castaneum

Many organisms across the Metazoa have regenerative abilities with potentially conserved genetic mechanisms that can enlighten both medicine and evolutionary studies. Here, the role of canonical Wnt signaling was examined in the red flour beetle Tribolium castaneum in order to explore its role during metamorphosis and larval leg regeneration. Double-stranded RNA mediated silencing of Wnt-1 sign...

متن کامل

A heat shock protein and Wnt signaling crosstalk during axial patterning and stem cell proliferation.

Both Wnt signaling and heat shock proteins play important roles in development and disease. As such, they have been widely, though separately, studied. Here we show a link between a heat shock protein and Wnt signaling in a member of the basal phylum, Cnidaria. A heat shock at late gastrulation in the clonal marine hydrozoan, Hydractinia, interferes with axis development, specifically inhibitin...

متن کامل

Mechanisms of spinal cord injury regeneration in zebrafish: a systematic review

Objective(s):To determine the molecular and cellular mechanisms of spinal cord regeneration in zebrafish. Materials and Methods: Medical databases of PubMed and Scopus were searched with following key words: Zebrafish; spinal cord injuries; regeneration; recovery of function. The map of mechanisms was performed using Xmind software. Results: Wnt/ß-catenin signaling, L1.1, L1.2, Major vault prot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 137 18  شماره 

صفحات  -

تاریخ انتشار 2010